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1.0 INTRODUCTION

In recent years the reduction of jet engine noise has been
dramatic. These improvements have largely been concentrated
on the blade passing frequencies and their higher harmonics.
The contributions of these components has been so reduced
that attention is now being focused on the next most ob-
jectionable sound emanating from the jet engine, that is, the
multiple pure tone sound.

Multiple pure tone sound from aircraft engines is charac-
terized by its noise spectra containing numerous spikes at
shaft rotational frequency. Often some of the spikes pre-
vail over the spikes at blade passing frequency and are
thus quite audible. The response of human ears to multiple
pure tone sound (abbreviated as MPT sound) is distinctly
different from the response to blade passing frequency
sound. Most people hear blade passing frequency sound as
a shrill whine. MPT is perceived as a much lower tone and
more ragged type of sound. MPT is also called "buzz saw"
sound because it is allegedly similar to the sound from a
circular buzz saw.

Recently published works of Kester (Ref. 1), Sofrin and
Pickett (Ref. 2) and Philpot (Ref. 3) experimentally estab-
lished the essential features of the MPT. First, the MPT
sound from the current fan begins to dominate over the blade
passing frequency sound when the relative tip speed of the fan
exceeds sonic velocity. Second, it radiates only from the
inlet duct of the fan and not out of the discharge duct.
Third, and most important of all, the MPT signal is highly
repetitive over each revolution of the rotor. These observed
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waves from fan tip are responsible for the generation of the
MPT. Refs. 1 and 2 present convincing evidence that this is
indeed the cause.

When the relative Mach number of the fan tip exceeds unity,
bow shocks emanate from the leading edge of each blade and,
as long as the axial velocity remains subsonic, one branch

of bow shocks propagates away from and upstream of the rotor.
These bow shocks are locked to and spinning with the rotor.
In the absence of any geometric aberration of the blade, the
bow shocks would be spatially uniform in strength and spacing
(except for the monotonic attenuation with distance from the
rotor). However, references 1 and 2 report that the pres-
sure pattern in the compressor casing indicates an increasingly
nonuniform shock pattern with increasing axial distance up-
stream of the rotor plane. Since the shock waves are spin-
ning with the rotor, a stationary observer is swept by this
shock pattern irregular both in spacings and strength but
repetitive at each revolution of rotor. Thus the funda-
mental harmonic of such a sound is at the rotor frequency.



Were the shock patterns uniform, the fundamentals would be

at the blade passing frequency. The causes of such irregular
shock pattern amplification has been suggested to be the non-
uniformity in the geometry of the blades in an actual fan.
Although this is the most plausible explanation, it appears
not to be positively confirmed. Manufacturing tolerances

of conventional fans are usually very small and it is there-
fore a legitimate question to ask whether such small non-
uniformities in the blades could be responsible for the
generation and evolution of MPT. MPT sound does exist even
in subsonic fans if the fan blades are designed deliberately
to be nonuniform. However, in order to obtain substantial
MPT sound, the nonuniformity of the blade has to be so large
that sometimes they impair the other requirements.

The specific objectives of the present investigation are as
follows:

(1) First, to confirm both analytically and experi-
mentally, whether the lack of uniformity of blade geometry
within the manufacturing tolerances are responsible for the
MPT sound.

(2) Second, to determine whether different types of
nonuniformities can be characterized by their effect on the
generation of the MPT sound.

(3) Third, to determine the effect of the relative
Mach number and the flow angle on the evolution of the MPT
sound.

(4) Fourth, to determine the effect of the inlet duct
length on the MPT sound generation.

In the section immediately following, section 2, the
analytical method of MPT prediction is described. Section
3 presents the results based on the analysis. Section 4
discusses the experimental approach and facilities.

Section 5 presents the conclusions and recommendation for
future work.




2.0 ANALYSIS

2.1 Problem Statement and Assumptions

The problem to be analyzed may be posed as follows:

Given a rotor with blades of known geometrical non-
uniformities, compute the pressure field upstream of the
rotor.

To repeat the final objective, the goal is to examine if the
small errors within the manufacturing tolerances are respon-
sible for the MPT.

Needless to say, simplifications are needed to grapple with
the above problem and the following assumptions are adopted:

(1) There are no inlet guide vanes.

(2) The bow shocks are attached to the leading edges
of the blades.

(3) The flow field can be approximated by a two-
dimensional model.

(4) The diffusive effects due to viscosity and heat
conductivity are neglected.

Some remarks are needed to justify assumptions (3) and (4).
A guestion might be raised as to the validity of two-dimensional
assumption (3) in the conventional supersonlc fan design where

LT m Teeale S m a2
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to the theoretical study performed by McCune (Refs. 4 and 5),
the three-dimensional effects for such fans are so large that
strip theory is hardly adequate. However, diagonally opposite
experimentally evidence, which seems to lend support to the
present assumption, was presented in Ref. 2 where three-
dimensional effects were investigated. By inserting an annular
sleeve in the vicinity of the tip, they eliminated interference
in the radial direction. Comparison between the shock patterns
with the evolution of irregular shock patterns. Support of as-
sumption (4) is also found in Ref. 2. According to their mea-
surements, starting from a chord length or so away from the
rotor, the decay rate of average shock strength was found to

be inversely proportional to the axial distance. According to
Blackstock (Ref. 6) this decay rate is precisely that which

can be predicted by treating the flow everywhere as nondis-
sipative (with the exception of inside the shock wave) provided
the axial distance from the rotor is not too large; whereas a
dissipative model should show exponential decay. Therefore

it seems that assumption (4) is valid provided the attention



is restricted to the near and intermediate field region of
the rotor. It is a fortuitous circumstance that despite the
fact that the wall boundary layer along the outer casing
exists in the vicinity of the tip shock, these dissipative
effects on the shock decay at the outer edge of the boundary
layers are negligible.

2.2 outline of Analysis

Basically the whole analysis consists of the construction of
shock-expansion wave diagram upstream of rotor. Complications
arise because of mutual interference between blades. Before
considering how to estimate the effects of blade nonuniformity
on the wave system, it is instructive to consider the wave
system for the ideal rotor without any asymmetry. Fig. 1
shows the wave system for such an idealized rotor and the
description of the wave system is given in Reference 7.

Since the grasp of the wave system for the idealized rotor

is vital to the understanding of the next step, it is sum-
marized below. As seen in Figure 1, part of the expansion
fans emanating from the suction surface between A and C in-
teract with the shock wave generated from the same blade,
while the rest of the expansion fans between C and B inter-
act with the shock wave emerging from the adjacent blade.

The dividing Mach line C - C is the only wave not intercepted
by the shock and extends to infinity. Point C is that loca-
tion on the blade the tangent of which is parallel to the
velocity direction at infinity. If we cannot find a surface
tangent parallel to the velocity direction at infinity, this
is an unsteady condition and after the transient emissiorn of
an expansion fan at the leading edge, the velocity at infinity
adjusts itself until the proper conditions are established on
the suction surface. The trajectory of the curved shock can
be determined by locally applying oblique shock relations.

The conditions ahead and behind the shock are known from the
Prandtl-Meyer relation.

Having once grasped the above, it is immediately clear how to
examine the nonuniform blade arrangement. We need only
identify the change of position C from one blade to another
due to the change in the geometry between blades. The rest
is exactly the same as the idealized symmetrical rotor.

A computer program was written with which the wave diagram
may be.constructed. As the sources of nonuniformity, the
following blade-to-blade errors were considered.

(1) sSpacing between blades,

(2) sStagger angle, and

(3) Blade contour near the leading edge.




Given the distribution of these errors and the flow conditions
far upstream as inputs, the program provides such outputs as
the pressure distribution, its harmonic components and bow
shock trajectories as functions of axial distance. The de-
tailed description of the program is given in Appendix 1.

We will present here only a few points pertinent to the wave
construction procedure utilized.

Referring to Fig. 1 again, once point C is located on the
first blade, the expansion fans between C and B can be con-
structed immediately. _The expansion fan B intersects the
leading edge of the 2nd blade, A'. From the wedge angle of
the second blade, the initial shock shape can be constructed
as A'P'. The flow immediately downstream of the shock (in

the region 1) is also known. Now, according to the consid-
erations at the beginning of this section, the flow in region
1l must accelerate and attain Mach number at infinity at point
C' where again the tangent to the blade is parallel to the
velocity far upstream. This might seem to be true only if

the shock is extremely weak. However it turns out that this
holds true even if the wedge angle is moderately large, say,
10 degrees or so. This results from the fact that reflection
of the expansion wave by the shock is small and confirms the
validity of locating point C' (and C) by the aforementioned
principle. Resuming the procedure of determining bow shock
trajectory, the next segment P'Q' can be determined by finding
the oblique shock satisfying the known upstream and downstream
conditions. The same process determines the complete wave
system between two adjacent blades. There is one small salient
point to be made here. 1In as much as in the downstream region
(say, region 2) not only the flow direction but the velocity
is known and the shock is determined solely by specifying
either one of them, 1t appears that the problem is over-
determined and some conflicting results might show up by the
particular choice of downstream condition between the two.
Actually it turns out the choice is insignificant so long as
the shock remains moderate in strength. In the computer pro-
gram, the flow direction is taken as the known downstream
condition.

2.3 Comparison with Hawkings' Method

After the completion of the present investigation, a recently
published analysis of MPT by Hawkings (Ref. 8) came to the
attention of the present investigators. Although the basic
physical model of the shock-expansion fan interference and
the assumptions are the same, there appears to be distinct
differences between the two apprOaches. Hawkings' approach
is essentially a one dimensional (plane), unsteady shock
analysis, whereas the present method is a two-dimensional
(non-planar), steady shock analysis. According to Hawkings,
if one takes a direction normal to the average shock fronts,



theory of one-dimensional shock propagation is then applied

to describe their time history. The time, of course, is re-
lated to the axial distance. In the present analysis, the
shock is treated as two-dimensional. Although the shocks are
actually two-dimensional because of their curvatures and
blade-to-blade differences, one-dimensional assumption of
Hawkings is probably a reasonably good one. Such an approach
has the advantage of being able to preserve the analytical
expressions up to the advanced stages of computation. The
most crucial difference between the two methods are the fol-
lowing: In the Hawkings' analysis, the initial nonuniformity
of pressure profile has to be specified in order to obtain the
history of shock propagation and the relation between the non-
uniform pressure profile and the nonuniform blade geometry has
to be guessed by some indirect means. In the present analysis,
it is unnecessary to specify the initial pressure profile which
results as a part of the answer once the nonuniformity of
blade geometry is specified. Since, as emphasized before,

the kernel of the supersonic MPT problem is to investigate
whether small errors within the manufacturing tolerances are
really responsible for MPT generation, it would seem that the
present analysis answers the question in a more direct way.




3.0 RESULTS OF THE ANALYSIS

Utilizing the analysis described in Section 2, sample com-
putations were conducted and these will be presented herein.
The cascade geometry and the blade shape chosen is given in
Table 1.

3.1 Ideal Uniform Blades —-- Decay Rate of Zhock Strength

As far as the MPT sound is concerned, the case of the uniform
bladed rotor is of no particular consequence. However such an
idealized case provides a good check on the entire analysis.
Figure 2 is a plot of the decay of the shock strength for an
ideally uniform cascade versus axial distance. It is readily
observed that there is a change over in the decay rate. 1In
the vicinity of the rotor the decay is gradual, at a rate
approximately proportional to the inverse square root of the
distance. After a transition in the neighborhood of one blade
spacing ahead of the rotor, the decay rate becomes approximately
inversely proportional to distance. According to Blackstock,
(Ref. 6), this inverse decay rate is what can be expected

with the inviscid model in the intermediate region between

the close near field of the rotor and the far field. An in-
teresting comparison can be made between Figure 2 and Figure
14 of Ref. 2, which is reproduced here as Figure 3. 1In

Figure 3, the shock strength is an average shock strength
measured from the actual fan. Thus the measured decay rate

of an individual shock reflects the blade-to-blade non-
uniformity but the average decay rate can be considered to

be close to the ideal uniform blade case. The nominal

spacing of the fan blades is about 2.8 inches. It is seen
that the two different decay rate and their transitional

point agrees quite well with the computed results.

3.2 Nonuniform Blade Geometry

3.2.1 Effects of Blade Spacing Errors

At this point only the effect of blade spacing errors in the
absence of other nonuniformities will be considered. Figure

4 shows the growth of MPT in the two cases of spacing error
distribution. The two different error distributions are

given in Table 2. It is easily seen that even at a distance

of five blade spacings ahead of the rotor, the MPT is still
less than the blade passing frequency in intensity. Since

the experimental results show that MPT intensities exceed

BPF at about two or three blade spacings ahead of rotor, it
would appear that spacing errors per se are insignificant in
MPT generation. This is in contradiction to the speculation

of Ffowcs~-Williams (Ref. 9), where the error in circumferential
positioning is one of the essential features of MPT. The
answer to the question as to which is correct cannot be pro-
vided by the experimental fan simply because actual fans contain



other nonuniformities which tend to mask, as will be seen
shortly, the spacing error effects,

3.2.2 Effects of Stagger Errors

Figure 5 shows the effect of stagger errors in the two cases
of stagger error distributions. The two different error
distributions are given in Table 3. At three blade spacing
ahead of rotor, some MPT harmonics begin to prevail over BPF
harmonics and this trend agrees with the observations (Refs.
1 and 2). The plot of pressure profiles, Figqure 6, shows the
change of pressure profiles at three different axial locations.
Close to the rotor, the shocks are more or less uniform both
in strength and spacings but away from the rotor, they become
very irregular. Such a trend is also well established by
experiments (Refs. 1 and 2). Therefore it would seem safe to
conclude that stagger errors are important MPT generators.
Physically there are two mechanisms of MPT generation. First,
since the airfoil shape of the supersonic fan is nearly a
flat plate, even a small change in the stagger can cause ap-
preciable positional change of point C of Figure 1 along the
suction surface. This positional change of C in turn induces
the blade-to-blade changes in the initial shocks both in
strength and direction. Second, the initial difference in
the shock direction amplifies the shock-to-shock spacing non-
uniformity as the shocks propagate upstream. Therefore
seemingly small stagger errors result in substantially ir-
regular shock patterns. Philpot (Ref. 3) appears to be the
first to speculate the importance of stagger errors for MPT.
The blade contour errors would also be a strong generator of
MPT due to their effects similar to stagger angle errors.

The control of such errors, however, is extremely difficult
to achieve because of the buffing practice in manufacture

and deposition of foreign materials during flight service.



4.0 MPT EXPERIMENTS

4.1 Introduction

Previous investigators (Ref. 1, 2 and 3) have studied the
growth of the multiple pure tones in full-sized compressors.
In most of these cases the flow geometry upstream of the
rotor plane was rapidly diverging, j.e, an inlet bellmouth was
used. Only a very limited amount of data (Ref. 2) was taken
in a constant area annulus. In this investigation, to
establish the connection between blade defects and MPT
generation, the rotor nonuniformities are measured and used
to predict the MPT generation. To allow a reasonably valid
comparison between the predictions and experiments a constant
area inlet annulus of approximately 9 rotor blade spacings

is used. The evolution of the wave pattern in this long in-
let is investigated by placing piezoelectric pressure trans-
ducers in the outer wall at three upstream locations. Mea-
surements of the noise emanating from the compressor inlet
are simulated by using a traversing microphone in an inlet-
acoustical plenum chamber. The effect of the length of the
inlet duct on this sound emission will be investigated by
using two different duct lengths.

The effect of the flow variables that are of interest, the
relative Mach number and the inlet flow angle, will also be
determined. By running the compressor at three speeds and
three different discharge load settings at each speed the
effect of these variables on the MPT evolution can be
determined.

4.2 Test Compressor

The test rotor is a model of a first state fan rotor from the
G.E. TF-39, scaled to a 6 inch 0.D. and operated in a closed-
compressor acoustic test loop. Freon 12 is used as the
working fluid to reduce the running speed at any given Mach
number.

The compressor consists of a single stage 40-blade rotor and
a 72-blade outlet guide vane. The rotor blade chord 1length
is 0.6 inch. Figure 7 is a photograph of the rotor and
Figure 8 shows the typical blade geometry.

The compressor inlet section is made of two sections, a
constant area annulus and an inlet bellmouth, as shown in
Figure 9. By removing the annular piece the inlet bellmouth
can be brought right up to the rotor inlet plane. In this
manner the effect of the inlet duct length on the inlet
noise emission can be determined.

To study the generation of the MPT's it is necessary to
remove all other possible noise sources, if possible. For



these tests the inlet guide vanes, IGV's, were removed and
the struts (2 sets of 8 holding the inlet center body) made
very small, 0.047" thick , and placed as far upstream of the
rotor as practical. This will reduce the disruption of the
wave pattern to a minimal amount. Also the noise produced
by the rotor intercepting the waves from the struts will be
reduced. To reduce any noise due to the viscous wakes from
the rotor impinging on the stator and zny potential inter-
action between the rotor and the stator, the stator is placed
about 1.3 rotor blade chords downstream of the rotor.

4.3 Experimental Facility

4,3.1 Test Loop

The model compressor fits into a test loop which was designed
to determine the acoustic and monitor the aerodynamic perfor-
mance of a compressor.

The compressor is coupled to a variable speed eddy current
clutch electrical drive which can deliver 100 hp at a maximum
22,500 rpm. A running shaft carbon face seal and static
elastomer seals isolate the test gas from the external
environment. To isolate the plenum chamber and the piping
from the compressor vibrations thick rubber gaskets are used
as shear-type connections on the inlet and exhaust.

Figure 10 presents a layout drawing of the compressor test
loop with the reverberation chamber located upstream of the
compressor. The volume of the plenum chamber is approximately
60 cubic feet with a 16.8 sq. ft. cross-section. The inlet
duct of the compressor is coupled to the side of the lower
portion of the chamber.

The compressor annulus has a 0.092 sg. ft. cross section for
an inlet contraction area ratio of 182.6. Following the
compressor blade rows, the annular flow path diffuses over
an area ratio of about 2.7 and is then collected in an 8
inch diameter duct. The flow on leaving the compressor passes
through a ball valve, a heat exchanger, an ASME metering
nozzle, and an acoustic muffler before returning to the
plenum. A minimum of 30 db of attenuation is effected by
the muffler at frequencies above 2 KHz. On entering the
plenum the flow is conditioned through a set of diffusing
screens followed by a honeycomb straightener.

Weight flow through the compressor is determined by measur-
ing pressure drop across a calibrated flow nozzle in the 8-
inch pipe (see Figure 10). At the start of a test, air is
evacuated from the system, and then enough Freon added to
bring the pressure slightly above atmospheric pressure. To
maintain this condition during tests -~ thus minimizing possible
leakage Of air into the system - the Freon tank is left
conunected to the loop, with the valve open slightly. Gas
test samples were taken before and after compressor tests,
showing the Freon to be at a very high level of purity
throughout the test program.
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In a previous program (Ref. 4), the sound levels produced by
the drive motor and gear box employed to operate the model
compressor were measured and found to be well below the levels
to be expected from the compressor. Hence, no acoustic
isolation was required.

4.3.2 BAerodynamic Instrumentation

For the tests described in this report only overall compressor
performances data are taken. In the inlet annulus total
temperature, total pressure and static pressure are measured.
In the exhaust duct similar measurements are taken. The

total temperature is measured with a TC - type 1/8 inch

total temperature probe, manufactured by United Sensor and
Control. The total pressure is measured using an 1/8 inch
Kiel probe. Static pressure is measured with a wall static

tap.

In addition to the above meauurements, the pressure in the
acoustic chamber (wall static tap), the pressure drop across
the nozzle (wall static taps), and the gas temperature at the
nozzle (bare-wire thermocouple probe) were also recorded.

All these pressure measurements were taken with electronic
pressure transducers, Pace Model KP-15.

The compressor speed was sensed by an electromagnetic pickup
mounted at the coupling and the speed pulses counted by means
of an electronic counter. The flow was measured with an
ASME long-radius nozzle of five-inch diameter.

The signals obtained from these sensors are fed into a Hewlett
Packard Data-Logger and read sequentially into a teletype
consolie for printout and recording va paperl tape L0r sub-
sequent use in performance evaluation computer programs.

4.3.3 Acoustic Instrumentation

Inlet wave patterns are measured with piezoelectric pressure
transducers manufactured by Kistler Instruments, Model 601L1.
These probes are acceleration compensated and have a sensi-
tivity to acceleration of 0.002 psi/g. The probes are
mounted so that the sensitive portion is flush with the
outer radius of the inlet annulus. These probes are located
at 0.61, 1.76 and 3.01 rotor blade chords ahead of the rotor.

The microphone in the inlet plenum is mounted on a motor-
driven traversing mechanism that causes an oscillating motion
of the microphone, back and forth across the chamber, on a
circular arc in a plane not parallel to any of the chamber
walls. The center of this path is along the compressor axis
close to its inlet with a distance from the compressor inlet
to the microphone of approximately 2 ft.
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This motion takes 26 seconds to transverse completely in both
directions. The walls of the inlet plenum chamber are hard
metal. Hence, with proper calibration and instrumentation

it may be used as a reverberation chamber to determine the
acoustic power radiated from the compressor inlet. The de-
tails of the instrumental and calibration technique have pre-

viously been described in reference (3). Briefly, the pro-
cedure is to calibrate the chamber using the "integrated
tone-burst method" developed by Schroeder (11). During com-

pressor tests, measurements were made by a 1/8 in. Bruel and
Kjaer Model 4138 condenser microphone which had previously
been calibrated in Freon 12 gas using an electro-static
actuator (3).

Signals from these probes are amplified and fed to a 7

channel instrument tape recorder manufactured by the Norelco
Corporation. These magnetic tapes are then analyzed in a
spectral analyzer, using a 10 Hz bandwidth. This analyzer
uses a time averaging scheme to yield time steady frequency
spectrums of the signals. The advantage of this analysis
technique is that the time average of the signals is pre-
sented and not an instantaneous reading. This reduces the
data scatter and produces very clear spectrogram, particularly
if the signals have a high random noise content.
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4.4 Experimental Results

4.4.1 Rotor Imperfections

Figure 8 shows the typical blade geometry of the rotor as
gspecified on the drawings. To obtain a description of the
rotor defects, as an input to the analysis described pre-
viously, the assembled rotor was measured prior to testing.
The chord angle and the blade spacing were measured at the
tip. The blade profiles were inspected, but not measured,

and were found to be without major perturbations. Figure 11
shows the variation in chord angle and the blade spacing as
measured at the tip leading edge. The average chord angle is
measured to be 60.1 degrees, this combined with the angle
between the chord line and the tangent to the mean camber
line at the tip leading edge of 1l.6° yields a stagger angle
of 61.7°. The major perturbations occur between blades 7

and 8, and between blades 25 and 26. The stagger angle varia-
tions are on the order of * 1 degree while the spacing varia-
tion is within * 0.017 inch. On the full size fans the stagger
angle variation is usually * 1/2 to * 3/4 degrees. Because
centrifugal force is used to fix the blades in the dovetail
grooves, in the full size machines, the relative magnitude of
the spacing error is difficult to estimate. However the
stagger angle error is the most critical, and it is expected
that due to the large variations in stagger angle the MPT
content will be very large when compared to full size results.

4.4.2 Aerodynamic Performance

In order to establish the velocity diagrams of this blading,
a series of speed lines are run. Figure 12 illustrates the
performance data for the conditions as used in Lite acdousiic
testing, where Ppj; and Pps are the isentropic inlet and ex-
haust total pressures, W the compressor weight flow, 6 the
inlet temperature correction and § the inlet pressure correction
using 518.6°R and 2116 1lb/ft? as a base respectively. A more
extensive series of tests were conducted, but are not pertinent
to this study. From the performance data, the relative tip
Mach number and the incidence angle, can be found from the
axial flow velocity, the rotor tip speed and the blade stag-
ger angle. Figure 13 shows the variation of incidence angle,
o, with the relative Mach number, M., for three different
speeds and three different discharge valve settings. The
variation of incidence angle is less over the speed range
than the load range, with a maximum variation of 2 degrees
from 19,000 rpm to 22,700 rpm, while a maximum variation of
3.5 degrees occurs when changing from the least discharge
resistance to near stall. The relative Mach change with dis-
charge setting is quite small, (for a fixed speed) about 3%
or less.
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4.4.3 Acoustic Tests

4.4.3.1 Microphone Calibration

In condensor microphones the motion of the diaphragm depends
on the dynamic and dissipative affects of the ambient. Since
the microphone used in this study is designed for use in air,
a calibration of the frequency response characteristics in
the Freon 12 environment is conducted. 1In this test the
microphone and electrostatic actuator are placed in a small
glass-walled test chamber. The chamber is evacuated and
filled with Freon 12, and held at a slightly elevated pres-
sure, 2 to 5 psig. The electrostatic actuator is driven
through a Bruel and Kjaer microphone calibration appratus,
#4142, and the microphone, a Bruel and Kjaer 1/8 inch, #4138
is powered by a Bruel and Kjaer Power Supply, #2801. Figure
14 shows the response relative to the low frequency (250 Hz)
calibration conducted in air using a Bruel and Kjaer piston-
phone. Since the frequency range of interest was less than
16 KHz, only a portion of the dynamic range of the microphone
was investigated. For the ambient pressure range (0 to 3
psig) used, the effect on microphone sensitivity was negligible,
in the frequency range of interest (250 Hz to 50 KHz).

4.4.3.2 Acoustic Data Reduction Methods

The principal method of data reduction employed in this re-
port is to tape record the acoustic signals and then use a
spectral analyzer to obtain the amplitude frequency spectrum
of the signals. An important feature of the particular
system employed is a technique for obtaining the time average
of the spectrum. The analog signals are sampled, digitized
and stored in a digital computer and then the average com-
puted from these (100 to 200) samples. This average value

is then converted back to an analog form to drive the cathode
ray tube, CRT, display. For the data obtained on this study
the averaging time was varied from 2 to 4 seconds and the
results were found to be very time steady. To illustrate,

in a run of 40 seconds in duration there would be 10 fre-
quency spectra produced (for a 4 second averaging time) and
these spectra would be nearly identical.

The primary advantage of this technique is in reducing the
data scatter, particularly for broadband noise, since at any
frequency it provides the time averaged value of the signal
amplitude. The CRT display is then photographed using a
special 35 mm camera. Figure 15 shows the CRT display
amplitude versus the relative db level of the signal on the
tape. There are three separate runs on this figure and to
obtain quantitative measurements from the spectral displays
the db difference from the calibration signals must be used.
If a calibration signal produces an amplitude of 25/60 inches
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at a SPL = 160 and the signal of interest has an amplitude of
20/60 inches then the signal SPL level is 160 - (53.4 -
46.6) or 153.2 db (for data reduction run (1)).

4.4.3.3 Blade Passing Frequency Results - Long Inlet Duct

There are four parameters of interest in this investigation;
(1) upstream distance from rotor inlet plane, x, which is
normalized by the rotor chord length, C, (2) relative inlet
Mach number at the rotor tip, My, (3) incidence angle of the
flow, o, and (4) compressor speed, N = (rpm), or expressed

as blade passing frequency, BPF. Mach number and the incidence
angle vary simultaneously as the flow through the compressor
is changed by the discharge valve. Figures 16, 17 and 18

show the variation of the SPL (contained in a 10 Hz bandwidth
around BPF) with upstream axial distance from the rotor. On
each figure three different discharge valve settings are given
for each compressor speed. In all the cases except one, the
BPF noise exhibits a rapid drop-off with increasing axial
distance. This unexpected rise, (see Fig. 16) of the BPF
content with axial distance appears to be due to the increased
broadband noise at that particular position and conditions,
(x/c = 3.01, BPF = 13 kc and the intermediate flow setting)
when compared to the other axial positions. Close to the
rotor (x/c = 0.61) the BPF noise decay with distance is very
rapid ranging from 21 db/chord at high compressor speed to
about 33 db/chord at the low compresscr speed. When the
compressor flow is reduced the BPF noise increases for all the
compressor speeds, neglecting the slight dip at the x/c = 3.01
station when running at the highest speed.

The changes in BPF noise with the flow reductions are very
large tor the low speed (13 - 13.25 kc¢) runs and the high
speed (15.1 kc) runs while for the intermediate speed (14 kc)
runs they are much smaller. One would expect the BPF content
to be increased due to increase in the incidence angle as
this will increase the separation of the unattached shock (at
these high angles) and delay the MPT noise generation. These
changes, however, are much too large to be totally accounted
for by the upstream motion of the bow shock wave due to this
increase in incidence angle.

Since both the relative Mach number and the incidence angle

are varying together, the two effects are somewhat confounded,
to alleviate this situation the same data is redrawn on

Figures 19, 20 and 21 as a function of the relative Mach

number, with the incidence angle as a parameter, for the

three axial transducer locations. Close to the rotor (x/c =
0.61) the BPF content decreases with increasing M_. and in-
creases with increasing o. The variation with Mach number is
expected since the higher Mach number would be expected to

have a faster decay of the BPF content due to faster development
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of the "skewed" wave patterns. The effect of increasing the
incidence angle is apparently causing an increase in overall
SPL close to the rotor, as well as a shift in shock position
as mentioned before.

At x/c = 1.76 raising the incidence angle at a fixed Mach
number causes very little change until close to stall, when

a rise in the BPF content occurs. This increase in BPF noise
does not appear to be due to an increase in the broadband
noise level.

At x/c = 3.01, raising the incidence angle at high Mach num-
bers causes the BPF content to decrease and then rise. For
this position raising the Mach number causes the BPF content
to decrease. This dropping phenomenon is associated with the
decay of the BPF content and the strength at the rotor inlet
plane since it did show up at x/c = 0.61l. The overall trends
observed are that BPF noise decreases with increasing M, and
increases with increasing a.

Oscilloscope photos of the wall static pressure wave forms
are shown on Figures 22 and 23. The effect of compressor
speed, principally Mach number is shown on Figure 22, the
flow conditions are similar to the high flow conditions (wide
open discharge valve) as shown on Figure 13. The top trace
is from a 40 tooth gear mounted on the compressor drive shaft
with a notched tooth positioned such that it passes the
magnetic pickup when the blade number 1 is passing the
tangential position of the pressure transducers. The posi-
tion of the major perturbations of the wave form (from a
uniform wave at BPF) are closely correlated to the position
of the major imperfections of the rotor as described in
section 4.4.1. These wave forms would be representative of
the (wide open discharge valve) data as shown on Figures 19,
20 and 21. The decrease of the BPF content with distance and
Mach number is clearly evident from this figure. Also the
signals are seen to be "locked to the rotor" and spiralling
up the inlet duct. The effect of throttling the compressor
at a fixed speed is shown on Figure 23. Again the conditions
are similar to those on Figure 18,

4.4.3.4 Multiple Pure Tone Distribution - Long Inlet Duct

Figures 24 through 32 show the SPL spectrum for the three
transducers located in the inlet duct as well as for the
plenum microphone. From these figures it can be seen that
the spectra are very rich in MPT content. 1In particular,
even close to the rotor (at x/c = 0.61l) the MPT content is
quite large, and in some cases the predominant MPT's are
greater than the BPF noise. On the left side of each spectra
are the calibration signal level, the deflection that signal
would have and the calibration curve to use on Figure 15 (as
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explained in section 4.4.3.2), these values are used to obtain
gquantitative measurements of the spectra.

The distribution of these tones is fairly uniform, so that by
measuring the maximum peak in the frequency range from 3 to

10 KHz a fairly good idea of the MPT content is obtained.
Table 4 shows the SPL at the BPF, at the mid-range and at the
low frequency end of the spectrum for all the nine runs. On
Figures 33 through 35 the SPL of the peak MPT in the mid-band
of the spectrum (3 to 10 KHz) is shown. In general the MPT
strength decreases in the upstream direction but not as fast
as the BPF noise, and the rate of decrease slows with in-
creasing Mach number. Apparently due to the large nonuniformities
of the rotor the prominent MPT's are established very quickly
and decay slowly in the upstream direction. This decay of the
prominent MPT's is predicted by the results of the analysis.
The axial decay of the MPT's are in apparent contradiction
with previous reported results. The reasons for this dif-
ference appear to be due to two effects: (1) the level of
the MPT's at the first measuring point (x/c = 0.61) are large
in this study indicating that the nonuniformities are larger
than used previously. This will cause an early establishment
of the predominant MPT's. With smaller nonuniformities a
larger axial distance is required before the MPT's develop
significantly. (2) The previous results indicate that the
level of the MPT's reach a plateau and then travel upstream
unchanged. These results, however, are based on measurements
taken in an inlet bellmouth, which may alter the MPT evolution
process with respect to what occurs in a constant area annulus.

At the lowest speeds, reducing the fan weight flow with the
discharge valve reduced the MPT level. This trend changeés
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ducing the through flow causes an increase in the MPT level.
Varying the compressor speed at a fixed discharge setting
causes the MPT noise to have a maximum near a relative Mach
number of 1.15. When compared to the BPF noise, Table 4, the
dominance of the mid~range MPT's over the BPF noise is a
monotonically increasing function with axial distance for the
higher speed runs (BPF > 14 KHz), and shows a rising and then
a falling dominance for the lowest speed run. This is due

to the more rapid decrease of the MPT's with distance for
this compressor speed (BPF = 13 KHz).

4.4.3.5 Plenum Measurements

The SPL frequency spectra as measured in the inlet reverberant
chamber (plenum) are shown on Figures 24 through 32 for the
long inlet duct case. The BPF drops rapidly with relative
Mach number as can be seen on Figure 36. The long inlet data
has not been corrected for the frequency response of the
microphone, this will reduce the SPL at BPF by 6.5 db. The

17



plenum BPF noise is much less sensitive to the incidence
angle when compared to the wall static measurements in the
inlet duct. This can be seen by comparing Figure 36 to
Figure 21 (for the long inlet case), the plenum measurements
can be plotted on a single line. Overall trends are quite
comparable, though, having an initial rapid decrease with Mp
and then a leveling off.

By removing inlet annulus and keeping everything else the
same, the effect of inlet duct length on the sound emission
is investigated. On Figure 36 the SPL at BPF with the short
inlet is shown, along with the case for the long inlet. The
level of the BPF noise for both of the plenum measurements
are much lower than the wall statics, as is expected. The
short inlet case is about 16 db higher in SPL (remembering
to correct the long inlet data) with nearly the same decay
with relative Mach number. For this short inlet case, to
correlate the near field to the sound emission, a rough
comparison can be made between Figure 19 (x/c = 0.61) and
Figure 36. Again the effect of incidence angle is much less
in the plenum measurements and the trend of the decay of the
SPL at BPF is comparable for both cases.

Figures 37, 38 and 39 show the plenum SPL frequency spectra
for the short inlet runs. Table 5 shows the plenum SPL of
the rotor frequency (RF) noise, the level of the prominent
MPT in the mid-range of frequency (3 to 10 KHz) and the blade
passing frequency noise. These data are all taken at a fixed
microphone position and may not be representative of the
overall emitted sound due to the variation of the signal with
position, as can be seen by referring to Figure 36. Therefore
an error of approximately 4 db is possible in these measure-
ments. Overall the MPT's of the short inlet are more uniformly
distributed than for the long inlet case. The largest dif-
ference in the comparable spectra of the long and the short
inlet occurs at frequencies above the rotor frequency. The
long inlet results have much lower level mid-range MPT's
(particularly at the lowest compressor speeds) than the short
inlet case. The MPT's of the long inlet duct, become con-
centrated at the low frequency and the high frequency end of
the spectrum when the compressor weight flow is reduced at
constant speed. This concentration of MPT's at the low fre-
quency end (in the long inlet case), is particularly evident
for the highest speed runs (BPF = 15 KHz).

The variation of the plenum RF noise with compressor sveed,
along a fixed load line, is quite different for the two in-
let cases. In the case of the long inlet, at the maximum
flow setting, the RF noise increases steadily, but at the
intermediate and the near-stall setting it rises, then drops
with increases of compressor speed. This rising and dropping
also occurred in the predominant MPT's of the wall static
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measurements, at x/c = 3.01. With the short inlet, the
maximum flow setting produces a rising and falling RF noise
variation with increasing compressor speed, while more
restrictive settings continually increase, just the reverse
of the long inlet case.

The p051tlon of the plenum microphone is the same for the

SPL spectra appearing on Figures 24 through 32, 37, 38 and
39 and on Table 5. The variation in SPL as the microphone
sweeps across the plenum chamber can be seen by referring

to Figure 36.

4.4.4 Experimental Summary
4.4.4.1 Long Inlet Duct

The BPF noise, in general, decreases rapidly with upstream
axial distance from the rotor, decreases with relative Mach
number o0f the rotor and increases with the flow incidence
angle.

The level of the dominant MPT, also decreased in the upstream
direction but not as rapidly as the BPF noise and less rapidly
as compressor speed 1is raised. Comparing the MPT noise to

the BPF noise yields a monotonically increasing dominance
with distance of the MPT noise over the BPF noise for the
cases of the higher speed runs (BPF > 14.0 KHz). At a fixed
discharge setting the MPT noise increases with compressor
speed until the relative Mach number is about 1.15 and then

it decreases. At a fixed compressor speed the variation of

the MPT with flow reductions ranged from decreas1ng the MPT
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the intermediate and highest speeds.

The angular position of the major disturbances to the pres-
sure wave forms spiralling up the inlet duct are well cor-
related to the major nonuniformities of the rotor geometry.

4.4.4.2 sShort Versus Long Inlet Duct

By changing the long inlet annulus (4.125" in length) and
starting the inlet bellmouth nearly at the rotor inlet plane
a 16 db increase in BPF noise level is obtained. With either
inlet the plenum BPF noise falls off rapidly with relative
Mach number, until about M, = 1.2. The incidence angle
variations are seen to have a much smaller effect on the
plenum BPF noise than on the inlet duct wall static BPF noise.

The correlation of the measurements made in the inlet duct
to the emitted sound are also of interest in this study. By
comparing x/c = 3.01 wall static measurements to the plenum
(long inlet) results a qualitative measure of this can be
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obtained. In all cases the noise at the rotor frequency
dominates the plenum measurements, with the BPF noise showing
up only at the lowest speed runs. The BPF noise is much
lower within the plenum but has about the same rate of decay
with M, as at x/c = 3.01. A reduction of the MPT's above the
20th multiple of the rotor frequency is another major dif-
ference in the spectrum between the x/c = 3.01 location and
the corresponding plenum measurements.

To compare the short inlet measurements in the plenum to the
wall statics, the position, x/c = 0.61l, can be used as re-
presenting the events close to the rotor. Again the BPF noise
is lower in the plenum, but has a comparable rate of decay
with Mach number. The rotor frequency noise again dominates
the plenum measurements, in contrast to the wall static re-
sults at x/c = 0.61l. The mid-range MPT's are suppressed but
not as much as the case with the long inlet.

The overall effect of having a short inlet appears to be:
(1) a large increase in BPF noise,

(2) an increase in the mid-range MPT's, resulting in
a more uniform spectral distribution of the MPT's,

(3) an increase in RF noise, that is almost negligible
at the lowest speeds and increases with compressor
speed.

4.4.5 Comparison Between Theory and Experiments

Only the effects of stagger angle errors and blade spacing
errors are included in the calculations. The limited size
of the model fan impeded any precise measurements of the
blade contour errors. Thus this effect, which could have
potentially significant bearing on MPT, is not included in
the computed results.

In the analysis, it was assumed that shocks are attached at
the leading edge. However in the model fan, the leading
edges of the blades are guite blunt and the shock is probably
detached. The detached shocks introduce two modifications.
First, the standoff distance displaces the origin of the
shock slightly ahead of the leading edges. The displacement
effects themselves have no bearing on the MPT but the blade-
to-blade variations of standoff distance could modify the
MPT evolution. Such standoff distance variations would,
however, be effectively the same as the blade spacing varia-
tions and this might not have appreciable effects on the MPT
generation. Second the appearance of a subsonic region down-
stream of the detached shock delays the incipience of shock
expansion fan interference. Therefore at a given axial
distance upstream of rotor, the amount of shock expansion
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fan interaction would become less and MPT evolution might be
reduced. In any event, since the computer programming was
written for the attached shock, the effects of detached
shock could not be taken into account. Instead an ad hoc
improvision was made in the following way to handle blunt
leading edges. The model blade contour on the suction sur-
face is not unlike a wedge, but near the leading edge it 1is
joined into a small circle. In the computation, it is
assumed that the attached shocks start at the transition
point between the wedge and the circle.

since this ad hoc assumption breaks down for low Mach number,
the computation will be limited to the case of higher Mach
number. A relative Mach number of 1.25 is used. As for the
angle of attack, the restriction that the shocks should be
attached at the transition point put some light on the
choice of angle of attack. Here the angle of attack is
chosen to be 1.8 degrees, somewhat less than the values at
which the experiments were conducted. These input data were
tabulated in Table 6. 1In Fig. 18, where the decay of the
sound pressure level centered at the blade passing frequency
is shown, the computed value is compared with the experi-
mental results. The agreement is fairly good considering the
various assumptions made in the analysis and particularly

the fact that blade contour nonuniformity, a possibly im-
portant factor, is not used in the computation. The computed
evolution of the MPT is plotted in Fig. 40. In this figure,
positions K-1, K-2 and K-3 correspond to the positions of

the probes located at x/c = 0.61, x/c = 1.76 and x/c = 3.01,
respectively. When one compares this with the measured
results, Figs. 30, 31 and 32, it is noticed that in the
computed results there are virtually no MPT's between tenth
harmonic and thirtieth harmonic, whereas in the experimental
results there are many MPT's in between. The main reason

for this difference is considered to be due to the blade
contour nonuniformity, the effect of which, as repeatedly
mentioned, is not included in the computed results. However
the computed results do predict that the largest MPT is the
first harmonic of the shaft frequency, which agrees with the
experimental results.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

A theoretical and experimental investigation was conducted on
multiple pure tone noise. Multiple pure tone sound from air-
craft engines is characterized by a noise spectrum containing
numerous spikes at integer multiples of the shaft rotational
frequency.

In the analysis, it is assumed that the flow is two-dimensional
and inviscid and the bow shocks emanating from the blades are
attached to the leading edges. The analysis, consisting of
the construction of shock expansion wave diagram, predicts

the generation and evolution of MPT from the prescribed blade-
to- blade nonuniformities in rotor geometry. The results show
that even small nonuniformities, within the manufacturing
tolerances, can cause a significant amount of multiple pure
tone noise. The trend of the computed MPT evolution agrees
with a previously observed one. Among different kinds of
nonuniformities investigated, errors in blade stagger or

blade contours are much stronger generators of MPT noise

than errors in blade spacings.

The experimental results concur with the axial decay of BPF
noise measured by previous investigators. Other aspects of
these experiments have explored the effects of relative Mach
number, incidence angle and inlet duct length on the BPF and
MPT noise evolution. The results are discussed in section
4.4.4, Experimental Summary.

In order to compare the experimental results with the analysis,
the MPT distributions were computed from the measured blade
nonuniformities of the model fan. Due to the lack of mea-
surements of the blade contour nonuniformity, an important
MPT generator, the comparison between theoretical and experi-
mental results is not exact. However, the computed result
correctly predicts the position of the maximum peak of
multiple pure tones in the frequency spectrum. The computed
decay rate with axial distance of sound at blade passing
frequency compares favorably with the measured results, as
well as the level of the BPF noise. The angular position

of the major disturbances to the pressure waveforms spiralling
up the inlet duct are well correlated to the major non-
uniformities of the rotor geometry as is predicted by the
analysis.

In summary this study has conducted a combined analytical and
experimental program that has demonstrated (1) the MPT sound
is due to rotor geometry imperfections, and the angular
position of the pressure waveform distortions are correlated
to the location of these imperfections, (2) the evolution of
the MPT sound can be predicted by a two-dimensional, inviscid
analysis using the known rotor nonuniformities, (3) rotor
relative Mach number and incidence angle are important
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parameters to the evolution of the MPT sound in the Mach
number range tested, (4) the inlet duct length has an im-
portant influence on the MPT sound emission.

As a logical next step for possible future effort in the
prediction of MPT sound, the following extensions are
recommended;

(1) In the analysis, to include the effects of detached
bow shocks.

(2) In the experiments, to measure the blade contour
nonuniformities.

(3) Extend the Mach number range.
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Figure 4(a). kffect of Blade Spacing Errors
(Error Distyibution, A-1 of Table 2).
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Figure 4(b). Effect of Blade Spacing Errors
(Error Distribution, A-2 of Table 2).
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(Exror Distribution, B-1l of Table 3).



1 - ~
o o = =3

J
~
(=]

——m= SOUND PRESSURE LEVEL

20

Figure 5(b).

30

AT ONE BLADE SPACING AHEAD OF ROTOR

Effect of Stagger Errors
(Exrror Distribution,

B-2 of Table 3).

BPF (BASE)
10 20 30 40
— INTEGER MULTIPLE OF SHAFT FREQUENCY
AT THREE BLADE SPACING AHEAD OF ROTOR
BPF (BASE)
0 10 20 30 40
AT FIVE BLADE SPACING AHEAD OF ROTOR
BPF (BASE)
|| 1 a l- l 1 l||lll
0 0 20 30 40




At 0.1 Blade Spacing Ahead of Rotor

N N\

0.8 4
-> s -
s = nominal blade spacing
= static pressure
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Figure 6. Change of Pressure Profiles.
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Figure 7.

Scale Model Rotor.
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MODEL COMPRESSOR ROTOR (4.0 BLADES)
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TIP  PITCH  HUB
RADIUS (IN.) 2957 2549 2.9
MAX. THICKNESS IN) 0014 0020 0022
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MEAN DISCH, ANGLE  57° 14 4833 40" 2¢

Figure 8. Rotor Blade Geometry.
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Figure 12. Model Compressor Performance Map.
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Figure 22 . Wall Static Pressure Traces in the Long Inlet Duct.
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Figure 40.

Computed Evolution of MPT for Model Rotor
(M, = 1.25, angle of attack = 1.8 degrees)
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Table 1

Cascade Geometry and Tolerances

Mach number far upstream 1.4

incidence angle far upstream 72 degrees (measured from
axial direction)

number of blades 38

nominal stagger angle 65 degrees (measured from
axial direction)

tolerance in stagger t 3/4 degrees

tolerance in blade spacing t 0.1% of nominal spacing

nominal surface contour *parabolic shape

2
* *
3-‘51— = -0.555 @S‘—) + 0.17633 (Z’Sf—*)

where x*: taken along the line the angle of which measured
from the axial direction is equal to stagger angle
(see Fig. 40)

s: nominal spacing
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Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Figure 42.
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Option; nonuniformity in (1) stagger
(2) Blade Shape
(3) spacing

¥

Positions of uninterrupted Mach waves impinging
on I and I + 1 th blade

¥

Expansion fan system (1) downstream of
unintercepted Mach wave on Ith blade and
upstream of bow-shock emanating from (I+1)th
blade

¥

Expansion fan system (2) downstream of the
bow-shock and upstream of intercepted Mach
wave on (I+1l)th blade

¥

Trajectory of bow-shock interacted by two
systems of expansion fan

v

Pressure distribution at a given location
upstream of rotor

¥

Harmonic analysis of the pressure distribution

FLOW CHART

Structure of program "MPT".




BLADE SPACING ERRCRS DISTRIBUTION

Table 2

Blade No. A-1

L+ 1+ + +
*

OO~ bW

=
o
I+ 4+ 1 4+ 1

- [
(s o] W
b+ 0+ 4+ 10+ + 11

NN
[ W)
11

w
o
P+

w
[o)
I

W
o 0]
+ +

*
+ means + (0.1% error

- means - 0.1% error

L+ 1+ +++ 00+ +++ 1+ 1+0 0 +1 441

F+ 1+ 10+ 1 4+
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STAGGER ERRORS DISTRIBUTION

Table 3

7
=

Blade No.

L+ + + +
*

O 00~ U & WK p
L+ + 4+ + 41

XN N N R S iy W gy gy S
WINHOWONIO U = W
L4+ 0004+ 4+

3]
(e
I ++t+ 01+ 1 41

w
[#2]
+ o+

*
+ means + 0.75 degrees error
- means - 0.75 degrees error

I+ 4+ 1

o+

+

I+ 4+ 4+ 0+ 11

F+4+ 1+ 10+ 1 + 4

+ 1 + 1




—_— - ————— e e -

*

BPF (KHz) Mr
13.25 1.094
13 1.057
13 1.0375
14 1.157
14 1.144
14 1.128
15.1 1.26
15.1 1.245
15.1 1.226

TABLE 4

ACOUSTIC SUMMARY - LONG INLET

a(deg)

5.9

Broadband noise high

x/c

0.61
1.76
3.01

0.61
1.7¢6
3.01

0.61
1.76
3.01

0.61
1.76
3.01

0.61
1.76
3.01

0.61
1.76
3.01

SPL/BPF  ASPL*/MRF# ASPL/MRF  SPL/MRF
db db db db
155.9 -9.8/3 -1.2/20 154.7/20
137.5 12.3/1 +13.1/19  150.6/19
135.0 5.5/3 9.2/19  144.2/19
165.9 -16/1 -11.3/20 154.6/20
140.3 17.1/1 4.9/19  145.2/19
148.4* -1.7/3 -7/19 144.4/19
167.2 -18.7/3 -19.4/25  147.8/25
152.4 5.4/1 -9.7/25 142.7/25
146.9 -3.6/1 -9.7/19  137.2/19
152.5 -2.7/1 2.7/20 155.2/20
136.4 22.3/1 13.6/20 150/20
123.1 18.2/1 15.2/10  148.3/10
159.5 -8/3 -1.8/20 157.7/20
136.4 29.8/1 18.8/12 155.2/19
136.0 16.7/1 17.9/12  153.9/19
163.1 -11.6/3 -4.4/15  158.7/15
138.2 26.9/1 13.9/19  152.1/19
136.0 16.5/1 16.9/15 152.9/15
144.7 4.1/1 0.4/12 145712
131.0 27.5/1 14.6/11  145.6/11
129.9 22.9/1 13.2/12  143.1/12
152.¢ 1.3 3.6/206 156.2/20
134.0 33.1/1 18/20 152/20
128.8 26.4/1 21.7/10  150.5/20
159.2 -6.6/1 -4.6/12 154.6/12
141.8 24/1 9.9/12 151.7/12
135.5 14.4/2 15.2/20 150.7/20

# MRF - Multiples of rotor frequency

+

ASPL - Deviation from SPL at BPF

Tl



3oTUI 3I0US A

39TuIr buoTg A

9°60T
L°90T
L°80T

£ ECT
S°9TT
6"ETT

ARTAN
8°TCT
T°6TT

8°G6
9°G96
6°G6

9 101
Z°L6
S°L6
9°60T

£°80T
L°€0T

ap

Adg/1ds

0T/€°62T
01/8°L21
TZ/6°6TT

S1/€°1€1
Z1/0°Z¢T
0Z/2°€€T

2T/v° 91T
§1/5°12T
0z2/2°€21

01/€°%21
01/8°€2CT
91/0°8Z1

PI/6°€TT
6/1°LTT
€1/6°22T

6T/0°L6
6T/9°€0T
6T/L°60T

ap
x»ITdW/1dS

g 2%9v1

+kousnbsxy 10301 JO soTdIITnNW - JIW
»*

T°8%T T°8 zzZc°1
IR A AN 6°9 €T
9°T¥%1 ¥°9 6e T
6°9¥vT 7°8 6CT°T
G 6€T €L 6ET"T
8°€PT A 8YT"'T
9°6€T 6°6 GEO0°T
8°0¢€T 0°8 €G60°T
G621 9°9 990°T
S 1I€T 9°L 9221
0°9¢T £6°G ST
L°GET 1°S 9¢°T
T°TIVI 59°8 82T°T
6°6€T L°9 PPT°1T
€ IET v°g LGT"T
L°GET 9°6 LSEO0"T
6°€€T 9°L LSO°T
€°6CT 6°G 760°T
qp (bap) mw
Jd43/714dS 0

unusTd - AXruung oT3SNODY

T°ST
I°ST
1°ST

At
A
At

‘€T
"e€T
€T

€T
“eT
GZ* €T

(zHM)
Jdg

T2




Table 6

Input Data for MPT Computation of Experimental Rotor

Mach Number far upstream 1.25

incidence angle far upstream 63.8 degrees (measured
from axial direction)

number of blades 40

nominal stagger angle 62 degrees (measured from

axial direction)

errors in stagger see Fig. 11
errors in blade spacing see Fig. 11
nominal surface contour near * parabolic shape

the leading edge

* * * 2 *
ZZ._ = -0.04279 (-2-’51-) + 0.06993 (2—;-(—)



Appendix 1. Description of Computer Program "MPT"

The main structure of this program is shown in Fig. 42 and a
brief description is given below. 1In step 1, various options
are provided so that examinations can be carried out on the
effects of manufacturing errors in:

(1) stagger angle,
(2) blade shape near the leading edge, and
(3) spacing.
The effects of each error can be investigated independently
of other errors or can be examined along with others. As
explained in the section 2.0, it is necessary for the sub-
sequent computation to identify the positions of the uninter-
rupted Mach wave that are attached to the blades. This is
done in step 2. In step 3 and 4, two expansion fan systems
upstream and downstream of the bow shock are obtained. The
trajectory of the bow shock interacted by the two expansion-
fan systems is obtained in step 5. Pressure distribution at
a given axial location as a function of peripheral distance
is obtained in step 6. In the final step 7, the Fourier
analysis of the pressure distribution is performed to deter-
mine the harmonic components.
Throughout the program, the unit length is taken to be half
of nominal spacing. 1In addition to the main program, the
following subroutines are needed to execute the program.
Subhroutine ISPRESS
" INSLOP
" SHOCK
" PRAND
" INPRAND
" FOUCU
" TANGEN
" COORD
" DMACH

The functions of these subroutines are as follows:

ISPRESS compute isentropic pressure ratio between two
given Mach numbers.




INSLOP given the tangent to the airfoil contour,
compute the position.

SHOCK given the upstream Mach number and wedge angle,
compute the shock angle and downstream flow
condition.

PRAND given Mach number, compute Prandtl-Meyer
function v.

INPRAN given Prandtl-Meyer function, compute Mach
number.,

FOUCU harmonic analyzer.

TANGEN given the position on the airfoil, compute the
tangent to the surface.

COORD given the x coordinate of airfoil, compute y
coordinate.

DMACH given a point in expansion fan, compute Mach

wave passing through it.

The following input data are necessary to execute the computation.

INPUT FORTRAN SYMBOL
(1) Mach number far upstream EMACH
(2) Far upstream flow angle, measured THETA

from axial direction, in degrees
(3) Number of blades NB

(4) Number of Mach wave behind the NS
unintercepted Mach wave (usually 90)

(5) Maximum axial distance ahead of YMAX
rotor as ratio to half of the
nominal spacing

(6) Number of segment from rotor to NSEG
maximum axial distance

(7) Number of coefficients of poly- NPRO
nomial representing suction sur-
face contour (see 15)

(8) Number of coefficients of poly- NSLO
nomial representing suction sur-
face tangent versus coordinate
{(see 1lo)

5



(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

76

Number of points between shock
and unintercepted Mach wave to
obtain pressure profile (usually
10)

Spacing option
If 1, different spacing between
blades
If 2, identical spacing

Spacing between blades as ratio to
half of the nominal spacing; in
case of identical spacing, only
first spacing is needed

Stagger option
If 1, different stagger angle
If 2, identical stagger angle

Stagger angle, measured from axial
direction, in degrees; in case of
identical stagger, only first
stagger angle is needed

Suction surface option
If 1, different suction surface
shape
If 2, identical suction surface
shape

Jth coefficients of polynomial
representing blade shape of Ith
blade, C(I,J); y* = Cc(I,1) + C(I,2)
X*--- + C(I,J) x*(J-1)

(for X*, Y*, see Fig. 41)
In ca e of identical surface shape,
only C(1,J) is needed

Jth coefficients of polynomial
representing tangent-coordinate
relationship of Ith blade, A(I,J);

*
X* = A(I,1) + A(L,2) 2~ + ——= &
ax*

A(I,) (dy*/ax*) (3~
In case of identical surface shape,
only A(l,J) is needed

ISOP

SPACG (I)

ISTAGR

STAGR (I)

IBSURF

COEFF (I, J)

SCOEF (I,J)




Throughout the program, the value of specific heat ratio, vy,
is taken to be 1.4. In the case of problem involving a gas
other than air, the value of vy, designated as GAMMA in the
program, has to be changed accordingly.

[



Appendix 2

Listing of Program "MPT"
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Appendix 3.

Sample Input and Output.
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SAMPLE CALCULATIONS

A sample calculation for the spacing error distribution study,
A-1 of Table 2, is listed here. The flow data and airfoil shapes
are those listed in Table 1.

EMACH = 1.4
THETA = 72

NB = 38

NS = 90

YMAX = 10.0
NSEG =5

NPRO = 3

NSLO = 2

MMM = 15

ISOpP =1
SPACG(I) = see A-1 of Table 1
ISTAGR = 2
STAGR(I) = 65.0
IBSURF = 2
COEFF(I,1) =0
COEFF(I,2) = 0.17633
COEFF(I,3) = -0.0555
SCOEF(I,1) = 1.58855
SCOEF(I1,2) = -9.009
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In the output, first the input data are printed out. After
that, the pressure distribution at a given axial distance up-
stream of the rotor will be given. "SEGMENT NUMBER N" desig-
nate the pressure distribution at an axial distance equal to
YMAX x N/NSEG. Next the pressure distribution will be given
blade after blade. "PROFILE NUMBER" is not equal to blade
number. For example, the pressure distribution at profile
number 1 means the pressure distribution between the shock
waves emanating from the second and the third blades. "PERIPH-
ERAL DISTANCE" is measured from the intersection of the bow
shock emanating from the second blade and the axial distance
upstream of rotor in question. "PRESSURE RATIO" is the ratio
of static pressure to the static pressure at infinity. The
peripheral position of the shock and unintercepted Mach wave
are printed under the heading of "SHOCK POSITION" and
"UNINTERCEPTED WAVE POSITION". The origin of these positions
are the leading edge of the second blade. After the print-
out of pressure profiles, the harmonic content of the pres-
sure distribution are given. "HARMONICS" designates the
harmonics of shaft frequency. "SQUARE OF FOURIER COEFFICIENTS"
is the (amplitude of N-th harmonics x 27)2. Sound power
level of the harmonics, the BPF as base, is listed under the
heading of "DIFF. DB".
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